有理數(shù)包括正整數(shù)、0、負(fù)整數(shù)和分?jǐn)?shù)。正整數(shù)和正分?jǐn)?shù)合稱為正有理數(shù),負(fù)整數(shù)和負(fù)分?jǐn)?shù)合稱為負(fù)有理數(shù),因而有理數(shù)集的數(shù)可分為正有理數(shù)、負(fù)有理數(shù)和零。0是介于-1和1之間的整數(shù),是最小的自然數(shù),也是有理數(shù)。0既不是正數(shù)也不是負(fù)數(shù),而是正數(shù)和負(fù)數(shù)的分界點。
1、有理數(shù)可以寫為有限小數(shù)和無限循環(huán)小數(shù),無理數(shù)只能寫為無限不循環(huán)小數(shù)。
2、所有的有理數(shù)都可以寫成兩個整數(shù)之比,而無理數(shù)卻不能寫成兩個整數(shù)之比.
3、范圍不同。有理數(shù)集是整數(shù)集的擴(kuò)張。在有理數(shù)集內(nèi),加法、減法、乘法、除法(除數(shù)不為零)4種運算通行無阻。無理數(shù)是指實數(shù)范圍內(nèi)不能表示成兩個整數(shù)之比的數(shù)。
4、有理數(shù)為整數(shù)(正整數(shù)、0、負(fù)整數(shù))和分?jǐn)?shù)的統(tǒng)稱。無理數(shù)是所有不是有理數(shù)字的實數(shù),后者是由整數(shù)的比率(或分?jǐn)?shù))構(gòu)成的數(shù)字。
有理數(shù)的基本運算法則一、加法運算
1、同號兩數(shù)相加,取與加數(shù)相同的符號,并把絕對值相加。
2、異號兩數(shù)相加,若絕對值相等則互為相反數(shù)的兩數(shù)和為0;若絕對值不相等,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。
3、互為相反數(shù)的兩數(shù)相加得0。
4、一個數(shù)同0相加仍得這個數(shù)。
5、互為相反數(shù)的兩個數(shù),可以先相加。
6、符號相同的數(shù)可以先相加。
7、分母相同的數(shù)可以先相加。
8、幾個數(shù)相加能得整數(shù)的可以先相加。
二、減法運算
減去一個數(shù),等于加上這個數(shù)的相反數(shù),即把有理數(shù)的減法利用數(shù)的相反數(shù)變成加法進(jìn)行運算。
三、乘法運算
1、同號得正,異號得負(fù),并把絕對值相乘。
2、任何數(shù)與零相乘,都得零。
3、幾個不等于零的數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個時,積為負(fù),當(dāng)負(fù)因數(shù)有偶數(shù)個時,積為正。
4、幾個數(shù)相乘,有一個因數(shù)為零,積就為零。
5、幾個不等于零的數(shù)相乘,首先確定積的符號,然后后把絕對值相乘
四、除法運算
1、除以一個不等于零的數(shù),等于乘這個數(shù)的倒數(shù)。
2、兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。零除以任意一個不等于零的數(shù),都得零。
注意:
零不能做除數(shù)和分母。有理數(shù)的除法與乘法是互逆運算。
在做除法運算時,根據(jù)同號得正,異號得負(fù)的法則先確定符號,再把絕對值相除。若在算式中帶有帶分?jǐn)?shù),一般先化成假分?jǐn)?shù)進(jìn)行計算。若不能整除,則除法運算都轉(zhuǎn)化為乘法運算。
來源:高三網(wǎng)
能發(fā)現(xiàn)自己知識上的薄弱環(huán)節(jié),在上課前補上這部分的知識,不使它成為聽課時的“絆腳石”。這樣,就會順利理解新知識,相信通過有理數(shù)包括0嗎 0是有理數(shù)嗎這篇文章能幫到你,在和好朋友分享的時候,也歡迎感興趣小伙伴們一起來探討。