初二數(shù)學(xué)下冊都有哪些重要的知識點呢,跟小編一起看依稀吧,供參考。
(一)平行四邊形,是在同一個二維平面內(nèi),由兩組平行線段組成的閉合圖形。
(二)平行四邊形的判定
1.兩組對邊分別平行的四邊形是平行四邊形(定義判定法);
2.一組對邊平行且相等的四邊形是平行四邊形;
3.兩組對邊分別相等的四邊形是平行四邊形;
4.兩組對角分別相等的四邊形是平行四邊形(兩組對邊平行判定);
5.對角線互相平分的四邊形是平行四邊形。
(三)特別的平行四邊形
1.矩形:有一個角是直角的平行四邊形是矩形。
2.菱形:有一組鄰邊相等的平行四邊形是菱形。
3.正方形:一組鄰邊相等且有一個角是直角的平行四邊形是正方形。
一次函數(shù)(一)一般地,形如y=kx+b(k,b是常數(shù),且k≠0)的函數(shù),叫做一次函數(shù),其中x是自變量。當b=0時,一次函數(shù)y=kx,又叫做正比例函數(shù)。
(二)一次函數(shù)的圖像及性質(zhì)
1.在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。
2.一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)。
3.正比例函數(shù)的圖像總是過原點。
4.k,b與函數(shù)圖像所在象限的關(guān)系:
當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。
當k>0,b>0時,直線通過一、二、三象限;
當k>0,b<0時,直線通過一、三、四象限;
當k<0,b>0時,直線通過一、二、四象限;
當k<0,b<0時,直線通過二、三、四象限;
當b=0時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。
這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。
不等式(一)基本性質(zhì)
1.掌握不等式的基本性質(zhì),并會靈便運用:
(1)不等式的兩邊加上(或減去)同一個整式,不等號的方向不變,即:如果a>b,那么a+c>b+c,a-c>b-c。
(2)不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變,即:如果a>b,并且c>0,那么ac>bc。
(3)不等式的兩邊都乘以(或除以)同一個負數(shù),不等號的方向改變,即:如果a>b,并且c<0,那么ac<bc。
2.比較大小:(a、b分別表示兩個實數(shù)或整式)
一般地:
如果a>b,那么a-b是正數(shù);反過來,如果a-b是正數(shù),那么a>b;
如果a=b,那么a-b等于0;反過來,如果a-b等于0,那么a=b;
如果a<b,那么a-b是負數(shù);反過來,如果a-b是正數(shù),那么a<b;
即:
a>b<===>a-b>0
a=b<===>a-b=0
a<b<===>a-b<0
(二)不等式的解集:
1.能使不等式成立的未知數(shù)的值,叫做不等式的解;一個不等式的所有解,組成這個不等式的解集;求不等式的解集的過程,叫做解不等式。
2.不等式的解可以有無數(shù)多個,一般是在某個范圍內(nèi)的所有數(shù),與方程的解不同
3.不等式的解集在數(shù)軸上的表示:
用數(shù)軸表示不等式的解集時,要確定邊界和方向:
①邊界:有等號的是實心圓圈,無等號的是空心圓圈;
②方向:大向右,小向左。
感謝閱讀,以上就是初二下冊數(shù)學(xué)知識點總結(jié)歸納的相關(guān)內(nèi)容。希翼為大家整理的這篇初二下冊數(shù)學(xué)知識點總結(jié)歸納內(nèi)容能夠解決你的困惑。