建議同學(xué)們?cè)诳倧?fù)習(xí)的過(guò)程要善于總結(jié)知識(shí)框架,方便系統(tǒng)的復(fù)習(xí)知識(shí)點(diǎn),接下來(lái)小編給大家分享中考數(shù)學(xué)總復(fù)習(xí)必背知識(shí)點(diǎn),希翼對(duì)同學(xué)們有幫助。
(一)基本性質(zhì)
1.掌握不等式的基本性質(zhì),并會(huì)靈便運(yùn)用:
(1)不等式的兩邊加上(或減去)同一個(gè)整式,不等號(hào)的方向不變,即:如果a>b,那么a+c>b+c,a-c>b-c。
(2)不等式的兩邊都乘以(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變,即:如果a>b,并且c>0,那么ac>bc。
(3)不等式的兩邊都乘以(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變,即:如果a>b,并且c<0,那么ac<bc。
2.比較大?。?a、b分別表示兩個(gè)實(shí)數(shù)或整式)
一般地:
如果a>b,那么a-b是正數(shù);反過(guò)來(lái),如果a-b是正數(shù),那么a>b;
如果a=b,那么a-b等于0;反過(guò)來(lái),如果a-b等于0,那么a=b;
如果a<b,那么a-b是負(fù)數(shù);反過(guò)來(lái),如果a-b是正數(shù),那么a<b;
即:
a>b<===>a-b>0
a=b<===>a-b=0
a<b<===>a-b<0
(二)不等式的解集:
1.能使不等式成立的未知數(shù)的值,叫做不等式的解;一個(gè)不等式的所有解,組成這個(gè)不等式的解集;求不等式的解集的過(guò)程,叫做解不等式。
2.不等式的解可以有無(wú)數(shù)多個(gè),一般是在某個(gè)范圍內(nèi)的所有數(shù),與方程的解不同
3.不等式的解集在數(shù)軸上的表示:
用數(shù)軸表示不等式的解集時(shí),要確定邊界和方向:
①邊界:有等號(hào)的是實(shí)心圓圈,無(wú)等號(hào)的是空心圓圈;
②方向:大向右,小向左。
二次函數(shù)一般式及圖像關(guān)系二次函數(shù)的一般式為:y=ax2+bx+c(a≠0)。
a、b、c值與圖像關(guān)系
a>0時(shí),拋物線開口向上;a<0時(shí),拋物線開口向下。
當(dāng)拋物線對(duì)稱軸在y軸左側(cè)時(shí)a,b同號(hào),當(dāng)拋物線對(duì)稱軸在y軸右側(cè)時(shí)a,b異號(hào)。
c>0時(shí),拋物線與y軸交點(diǎn)在x軸上方;c<0時(shí),拋物線與y軸交點(diǎn)在x軸下方。
a=0時(shí),此圖像為一次函數(shù)。
b=0時(shí),拋物線頂點(diǎn)在y軸上。
c=0時(shí),拋物線在x軸上。
當(dāng)拋物線對(duì)稱軸在y軸左側(cè)時(shí)a,b同號(hào),當(dāng)拋物線對(duì)稱軸在y軸右側(cè)時(shí)a,b異號(hào)。
一元一次方程的解法1.一般方法:
①去分母:去分母是指等式兩邊同時(shí)乘以分母的最小公倍數(shù)。
②去括號(hào):括號(hào)前是“+”,把括號(hào)和它前面的“+”去掉后,原括號(hào)里各項(xiàng)的符號(hào)都不改變。括號(hào)前是“-”,把括號(hào)和它前面的"-"去掉后,原括號(hào)里各項(xiàng)的符號(hào)都要改變。(改成與原來(lái)相反的符號(hào)。
③移項(xiàng):把方程兩邊都加上(或減去)同一個(gè)數(shù)或同一個(gè)整式,就相當(dāng)于把方程中的某些項(xiàng)改變符號(hào)后,從方程的一邊移到另一邊,這樣的變形叫做移項(xiàng)。
④合并同類項(xiàng):通過(guò)合并同類項(xiàng)把一元一次方程式化為最簡(jiǎn)單的形式:ax=b(a≠0)。
⑤系數(shù)化為1。
2.圖像法:一元一次方程ax+b=0(a≠0)的根就是它所對(duì)應(yīng)的一次函數(shù)f(x)=ax+b函數(shù)值為0時(shí),自變量x的值,即一次函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo)。
3.求根公式法:對(duì)于關(guān)于x的一元一次方程ax+b=0(a≠0),其求根公式為:x=-b/a。
圓的知識(shí)點(diǎn)1.圓的對(duì)稱性
(1)圓是軸對(duì)稱圖形,它的對(duì)稱軸是直徑所在的直線。
(2)圓是中心對(duì)稱圖形,它的對(duì)稱中心是圓心。
(3)圓是旋轉(zhuǎn)對(duì)稱圖形。
2.垂徑定理
(1)垂直于弦的直徑平分這條弦,且平分這條弦所對(duì)的兩條弧。
(2)推論:
平分弦(非直徑)的直徑,垂直于弦且平分弦所對(duì)的兩條弧。
平分弧的直徑,垂直平分弧所對(duì)的弦。
3.圓心角的度數(shù)等于它所對(duì)弧的度數(shù)。圓周角的度數(shù)等于它所對(duì)弧度數(shù)的一半。
(1)同弧所對(duì)的圓周角相等。
(2)直徑所對(duì)的圓周角是直角;圓周角為直角,它所對(duì)的弦是直徑。
4.在同圓或等圓中,兩條弦、兩條弧、兩個(gè)圓周角、兩個(gè)圓心角、兩條弦心距五對(duì)量中只要有一對(duì)量相等,其余四對(duì)量也分別相等。
5.夾在平行線間的兩條弧相等。
(1)過(guò)兩點(diǎn)的圓的圓心一定在兩點(diǎn)間連線段的中垂線上。
(2)不在同向來(lái)線上的三點(diǎn)確定一個(gè)圓,圓心是三邊中垂線的交點(diǎn),它到三個(gè)點(diǎn)的距離相等。
(直角三角形的外心就是斜邊的中點(diǎn)。)
6.直線與圓的位置關(guān)系。d表示圓心到直線的距離,r表示圓的半徑。
直線與圓有兩個(gè)交點(diǎn),直線與圓相交;直線與圓惟獨(dú)一個(gè)交點(diǎn),直線與圓相切;直線與圓沒(méi)有交點(diǎn),直線與圓相離。
因式分解的方法1.十字相乘法
(1)把二次項(xiàng)系數(shù)和常數(shù)項(xiàng)分別分解因數(shù);
(2)嘗試十字圖,使經(jīng)過(guò)十字交叉線相乘后所得的數(shù)的和為一次項(xiàng)系數(shù);
(3)確定合適的十字圖并寫出因式分解的結(jié)果;
(4)檢驗(yàn)。
2.提公因式法
(1)找出公因式;
(2)提公因式并確定另一個(gè)因式;
①找公因式可按照確定公因式的方法先確定系數(shù)再確定字母;
②提公因式并確定另一個(gè)因式,注意要確定另一個(gè)因式,可用原多項(xiàng)式除以公因式,所得的商即是提公因式后剩下的一個(gè)因式,也可用公因式分別除去原多項(xiàng)式的每一項(xiàng),求的剩下的另一個(gè)因式;
③提完公因式后,另一因式的項(xiàng)數(shù)與原多項(xiàng)式的項(xiàng)數(shù)相同。
3.待定系數(shù)法
(1)確定所求問(wèn)題含待定系數(shù)的一般解析式;
(2)根據(jù)恒等條件,列出一組含待定系數(shù)的方程;
(3)解方程或消去待定系數(shù),從而使問(wèn)題得到解決。
感謝閱讀,以上就是中考數(shù)學(xué)總復(fù)習(xí)必背知識(shí)點(diǎn)的相關(guān)內(nèi)容。希翼為大家整理的這篇中考數(shù)學(xué)總復(fù)習(xí)必背知識(shí)點(diǎn)內(nèi)容能夠解決你的困惑。